US009459923B2

a2 United States Patent (10) Patent No.: US 9,459,923 B2
Branson et al. 45) Date of Patent: *Oct. 4, 2016
(54) DYNAMIC RUN TIME ALLOCATION OF (56) References Cited
DISTRIBUTED JOBS WITH APPLICATION
SPECIFIC METRICS U.S. PATENT DOCUMENTS
(71) Applicant: International Business Machines 7,386,586 B1* 62008 Headley G06F7g/95/28?
Corporation, Armonk, NY (US) 8,566,837 B2* 10/2013 Branson GOGF 9/50
709/208
(72) Inventors: Michael J. Branson, Rochester, MN 2006/0167984 Al 7/2006 Fellenstein et al.
(US); John M. Santosuosso, Rochester. 2008/0104605 Al 5/2008 Steinder et al.
MN ’(US) ’ ’ 2008/0216087 Al 9/2008 Dillenberger et al.
2009/0048998 Al 2/2009 Kaminsky et al.
(73) Assignee: International Business Machines (Continued)

Corporation, Armonk, NY (US)
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this U.S. Appl. No. 13/900,948 entitled “Dynamic Run Time Allocation
patent is extended or adjusted under 35 of Distributed Jobs With Application Specific Metrics” filed May

U.S.C. 154(b) by 646 days. 23, 2013 by Michael J. Branson et al.

(Continued)
This patent is subject to a terminal dis-

claimer. Primary Examiner — Kenneth Tang

(74) Attorney, Agent, or Firm — Martin & Associates,

(21) Appl. No.: 13/900,948 LLC; Bret J. Petersen

(65) Prior Publication Data A job optimizer dynamically changes the allocation of
processing units on a multi-nodal computer system. A dis-
US 2013/0254777 A1 Sep. 26, 2013 tributed application is organized as a set of connected

processing units. The arrangement of the processing units is
s dynamically changed at run time to optimize system

Related U.S. Application Data resources and interprocess communication. A collector col-
(63) Continuation of application No. 12/837,568, filed on lects application specific metrics determined by application

Jul. 16, 2010, now Pat. No. 8,566,837. plug-ins. A job optimizer analyzes the collected metrics and
determines how to dynamically arrange the processing units
within the jobs. The job optimizer may determine to com-

(51) Int. CL ithin the jobs. The job optimi y d i
GO6F 9/46 (2006.01) bine multiple processing units into a job on a single node
GO6F 9/50 (2006.01) when there is an overutilization of an interprocess commu-
(52) US.Cl nication between processing units. Alternatively, the job
T) optimizer may determine to split a job’s processing units
CPC o GOGF 97: 5.05 (2013.01); GOGF 9/50 into multiple jobs on different nodes where one or more of
A) the processing units are over utilizing the resources on the
(55) Field of Classif (2013 (;l) Gh06F 9/5066 (2013.01) he p ing uni ilizing th h
ield o assification Searc node.
None
See application file for complete search history. 11 Claims, 6 Drawing Sheets
Service Node 14 —
Application 224
Job Collector 144 Application Metric
0] r
O — Plug-ins 229
Optimizer |f— Application
142 N—| Specific Metrics Application Specific
145) Metrics 145

US 9,459,923 B2
Page 2

(56)

2009/0083390
2009/0150898
2009/0158276
2009/0313636
2010/0011254
2010/0043009

2010/0125477
2010/0131959

References Cited

U.S. PATENT DOCUMENTS

Al
Al
Al
Al
Al
Al*

Al
Al*

3/2009
6/2009
6/2009
12/2009
1/2010
2/2010

5/2010
5/2010

Abu-Ghazaleh et al.
Sohn et al.
Barsness et al.
Barsness et al.

Votta et al.

Marchand GO6F 9/4881
718/104

Mousseau et al.

SpPIersccovvvivieienne GOGF 9/50
718/105

OTHER PUBLICATIONS

U.S. Appl. No. 12/821,784 entitled “Dynamic Run Time Allocation
of Distributed Jobs” filed Jun. 23, 2010 by Michael J. Branson et al.

U.S. Appl. No. 13/755,146 entitled “Dynamic Run Time Allocation
of Distributed Jobs” filed Jan. 31, 2013 by Michael J. Branson et al.

U.S. Appl. No. 13/709,222 entitled “Dynamic Run Time Allocation
of Distributed Jobs With Application Specific Metrics” filed Dec.
10, 2012 by Michael J. Branson et al.

* cited by examiner

U.S. Patent Oct. 4, 2016 Sheet 1 of 6 US 9,459,923 B2

100
<> %8 e4Racks
Data (65,536 Nodes,
Service Node 131,072 CPUs)
140 clorage 130\>
Job
Optimizer
142 144 Rack
|/ 32 Node Boards
Application [(
Specific 150 —
Metrics (
Hardware Cntrl Sys Net [vicpl
i idplane
SyStem Metncs : —/146 132
-/
134 32 Nodes
Node \—(71/,~
(2 CPUs) # Midplane
110 B2 10 132
(:
S
=]
ad \
| 120
(< D\ ol Ido Chip 180
112 114 114 . /O Node (I/0 Processor)
170

FIG. 1

U.S. Patent Oct. 4, 2016 Sheet 2 of 6 US 9,459,923 B2

Compute Node (I/O Node)

| 10 RAM 214
Processors (CPU) —

Application 224

ALU 211f 210 Application Metric Plug-ins
t 22

Application Specific Metrics }_, 145
MMU 212 Job 226
| Processing Unit &|
‘ Operating System Kernel |
— 215

4 (b (s
v

Bus Adapter 21

J A A l
Collective Network Adapter
(Tree Network)
y 4 Y 30
Ethernet JTAG Point To Point e
Adap;ezr6 22glave (Torus) Network A
££0 | |££0 Adapter&
T T A A A A A A
N
240
YYVYVYYY \/
234 236 X+ X-Y+Y-Z+ 7Z-
%—J
238

FIG. 2

U.S. Patent Oct. 4, 2016 Sheet 3 of 6 US 9,459,923 B2

Service Node 140 Application 224
Collector 144 Application Metric
Job Plug-ins 229
Optimizer [/ Application (—
142 \]7 Specific Metrics Application Specific
) Metrics 145
145 —
FIG. 3
110A 110B 110C
NodeA NodeB NodeC
228_|ITeollPu Y »PU e PU
[[\ [\
\ \ 41 1\ 410 N
228 228 | 228 228
110D 110E 410 — 110F
NodeD NodeE NodeF
226
226
—H U pullpul T 1 [PU
[[[[
\ \ \ \
228 228 228 228

FIG. 4

U.S. Patent Oct. 4, 2016 Sheet 4 of 6 US 9,459,923 B2

110A 110B
NodeA NodeB
Job 1
228A PU1 | PU2 ~_3288
L4 \/226A 226B
228C PU3 Job 2 ~——
v PU5 228E
228Dl _| 4 pPuU4 > PUG 228F
Plug-n N—-229
App Metrics 4~ 145
110A 110B
NodeA NodeB
Job 1a
228B
PU1 | PU2 H-=
228A 296
T 2268
228C —__| PU3 610 Job 2 |l -
- -t 228E
App Metrics N~ 145 A
110C
NodeC —
Job 1b 612
] —
228D > PU4

U.S. Patent Oct. 4, 2016 Sheet 5 of 6 US 9,459,923 B2

110A 110B
NodeA NodeB
Job 3
228A PU1 | PU2 ~_3288
RS
228C—_1 4 PU3 _/226(:
Y
PU4 228D
PU5 228E
PU6 228F
Plug-in 229
App Metrics | | | 147

FIG. 7

U.S. Patent Oct. 4, 2016 Sheet 6 of 6 US 9,459,923 B2

(st) i?o
'

810
p» Execute Application Software /
With Application Metric Plug-ins

Collect Application Specific _/820
Metlrics
Analyze Metrics 830

840

Metrics In Range?

850
Identify Jobs/PUs Affecting The %

Performance Indicated By The

Metric
* 855

Examine Hardware System Metrics And
Identify Resource Problems Affecting the
Application Specific Metric

+ 860
Assess Potential Job/PU |
Relocations

890
Combine PUs Into A Split A Job Into Multiple /
Job PUs

FIG. 8

US 9,459,923 B2

1
DYNAMIC RUN TIME ALLOCATION OF
DISTRIBUTED JOBS WITH APPLICATION
SPECIFIC METRICS

BACKGROUND OF THE INVENTION

1. Technical Field

This disclosure generally relates to parallel computing
systems, and more specifically relates to dynamically allo-
cating a job or a processing unit (part of a job) on a
multi-nodal, parallel computer system based on application
specific metrics.

2. Background Art

Large, multi-nodal computer systems (e.g. grids, super-
computers, commercial clusters, etc.) continue to be devel-
oped to tackle sophisticated computing jobs. One such
multi-nodal parallel computer being developed by Interna-
tional Business Machines Corporation (IBM) is the Blue
Gene system. The Blue Gene system is a scalable system
with 65,536 or more compute nodes. Each node consists of
a single ASIC (application specific integrated circuit) and
memory. Each node typically has 512 megabytes of local
memory. The full computer is housed in 64 racks or cabinets
with 32 node boards in each. Each node board has 32
processors and the associated memory for each processor.
As used herein, a massively parallel computer system is a
system with more than about 10,000 processor nodes.

These new systems are dramatically changing the way
programs and businesses are run. Because of the large
amounts of data needing to be processed, current systems
simply cannot keep up with the workload. The computer
industry is more and more using distributed capacity or
distributed computing. An application or sometimes a part of
an application is often referred to as a “job”. In distributed
computing, a job may be broken up into separate run time
units (referred to herein as processing units) and executed on
different nodes of the system. The processing units are
assigned to a node in the distributed system by a job
scheduler or job optimizer.

DISCLOSURE OF INVENTION

A method and apparatus is described for a job optimizer
that dynamically changes the distribution of processing units
on a multi-nodal computer system using application specific
metrics. A distributed application is organized as a set of
connected processing units. The arrangement of the process-
ing units is dynamically changed at run time to optimize
system resources and interprocess communication. A col-
lector collects application specific metrics determined by
application plug-ins. A job optimizer analyzes the collected
application specific metrics, and then examines needed
hardware specific metrics to determine how to dynamically
arrange the processing units within the jobs. The job opti-
mizer may determine to combine multiple processing units
into a job on a single node when there is an overutilization
of an interprocess communication between processing units.
Alternatively, the job optimizer may determine to split a
job’s processing units into multiple jobs on different nodes
where one or more of the processing units are over utilizing
the resources on the node.

The disclosed embodiments are directed to the Blue Gene
architecture but can be implemented on any cluster with a
high speed interconnect that can perform broadcast commu-
nication. The foregoing and other features and advantages

10

15

20

25

30

35

40

45

50

55

60

65

2

will be apparent from the following more particular descrip-
tion, as illustrated in the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

The disclosure will hereinafter be described in conjunc-
tion with the appended drawings, where like designations
denote like elements, and:

FIG. 1 is a block diagram of a computer system as
described herein;

FIG. 2 is a block diagram of a single node of a massively
parallel computer system as described herein;

FIG. 3 is a block diagram that illustrates the interaction of
the software elements described herein;

FIG. 4 is a block diagram representing a portion of the
computer system 100 shown in FIG. 1;

FIG. 5 is a block diagram representing two nodes of a
computer system as represented in FIG. 1 to illustrate an
example of dynamically allocating an application or job as
described herein;

FIG. 6 is a block diagram similar to FIG. 5 to illustrate an
example of dynamically dividing an application or job as
described herein;

FIG. 7 is a block diagram similar to FIG. 5 to illustrate an
example of dynamically combining an application or job as
described herein; and

FIG. 8 is a method flow diagram for dynamically allo-
cating an application or job as described herein.

BEST MODE FOR CARRYING OUT THE
INVENTION

In this disclosure, a method and apparatus is described for
a job optimizer that dynamically changes the allocation of
processing units (PU) on a multi-nodal computer system
based on application specific metrics. A distributed applica-
tion is organized as a set of connected processing units. The
arrangement of the processing units is dynamically changed
at run time to optimize system resources and interprocess
communication. A collector collects application specific
metrics determined by application plug-ins. A job optimizer
analyzes the collected application specific metrics, and then
examines needed hardware specific metrics to determine
how to dynamically arrange the processing units within the
jobs. The job optimizer may determine to combine multiple
processing units into a job on a single node when there is an
overutilization of an interprocess communication between
processing units. Alternatively, the job optimizer may deter-
mine to split a job’s processing units into multiple jobs on
different nodes where one or more of the processing units are
over utilizing the resources on the node. In addition, the job
optimizer may determine to split a job’s processing units
into multiple jobs on the same node, in order to better utilize
a node with multiple processors.

In a distributed environment, message passing and shared
memory become standard mechanisms to address how infor-
mation is passed back and forth between processes or
processing units. When writing distributed applications,
developers typically need to design up-front how informa-
tion is passed between its distributed parts. Likewise, some
distributed systems are set up such that at deploy time the
end user can pick how processes will communicate. When
applications are distributed in a multi nodal environment,
trade-offs are typically made to determine where segments
of the application, i.e. “jobs” should be broken into separate
processing units (sometimes referred to as run time units) or
kept together in one job such that they can communicate

US 9,459,923 B2

3

more efficiently with each other. One drawback of process-
ing units in separate jobs, is that it increases IPC (Interpro-
cess communications) on mechanisms for communication
such as shared memory or information protocol sockets (IP)
which has a negative impact on performance. Alternatively,
where these processing units are kept together in one job
they can use some sort of synchronization method of passing
or accessing data amongst a plurality of threads. While the
environment dictates the optimal tradeoff between these, it’s
really not possible to know exactly what the environment
will be like at run time as things change and evolve as data
gets processed. The job optimizer as described herein can
dynamically reorganize the allocation processing units
based on a changing environment as discovered by collect-
ing application specific metrics determined by the applica-
tion.

The dynamic allocation of processing units as described
herein is facilitated by a software system that provides an
environment for distributed computing with local/remote
transparency to the application developer. This “software
system” could be part of an operating system, or it could be
a layer of software running on an operating system. The
software system typically will utilize more efficient com-
munication mechanisms in the local case than in the remote
cases. The application code is written in a manner that is
indifferent as to whether a PU is communicating (i.e.
exchanging data) with another PU via an intra-process
mechanism (i.e. stack, heap, etc.), an inter-process mecha-
nism (e.g. TCP/IP socket) or an inter-node mechanism (e.g.
TCP/IP socket running over a network connection). When
the allocation of PUs is changed to better optimize the
application, the underlying support for local/remote trans-
parency allows the application to continue to function with-
out the need to change its application code.

Dynamic relocation could be beneficial where a commu-
nications wire or network is simply bogged down and we
need to communicate in a different way. Or there may be a
circumstance when shared memory resources become tight
and it’s more important to spend time over a communication
wire than to use shared memory. Or furthermore we deter-
mine that the heap size of a given job is starting to cause
problems and therefore splitting out the work and relying
upon IPC is the correct choice of action. To facilitate the
dynamic relocation, there are metrics for each possible
communications mechanism used by the processing units.
These simple metrics are used to track how much a given
resource is being used and how much more taxing adding
more work can be to the given situation for that resource.

FIG. 1 shows a block diagram that represents a massively
parallel computer system 100 such as the Blue Gene/LL
computer system. The Blue Gene/L. system is a scalable
system in which the maximum number of compute nodes is
65,536. Each node 110 has an application specific integrated
circuit (ASIC) 112, also called a Blue Gene/L. compute chip
112. The compute chip incorporates two processors or
central processor units (CPUs) and is mounted on a node
daughter card 114. The node also typically has 512 mega-
bytes of local memory (not shown). A node board 120
accommodates 32 node daughter cards 114 each having a
node 110. Thus, each node board has 32 nodes, with 2
processors for each node, and the associated memory for
each processor. Arack 130 is a housing that contains 32 node
boards 120. Each of the node boards 120 connect into a
midplane printed circuit board 132 with a midplane connec-
tor 134. The midplane 132 is inside the rack and not shown
in FIG. 1. The full Blue Gene/L computer system would be
housed in 64 racks 130 or cabinets with 32 node boards 120

10

15

20

25

30

35

40

45

50

55

60

4

in each. The full system would then have 65,536 nodes and
131,072 CPUs (64 racksx32 node boardsx32 nodesx2
CPUs).

The Blue Gene/l. computer system structure can be
described as a compute node core with an [/O node surface,
where communication to 1024 compute nodes 110 is
handled by each 1/O node 170 that has an 1/O processor
connected to the service node 140. The 1/O nodes 170 have
no local storage. The /O nodes are connected to the compute
nodes through the logical tree network and also have func-
tional wide area network capabilities through a gigabit
Ethernet network (See FIG. 2 below). The gigabit Ethernet
network is connected to an I/O processor (or Blue Gene/LL
link chip) in the I/O node 170 located on a node board 120
that handles communication from the service node 160 to a
number of nodes. The Blue Gene/L system has one or more
1/O nodes 170 connected to the node board 120. The I/O
processors can be configured to communicate with 8, 32 or
64 nodes. The service node uses the gigabit network to
control connectivity by communicating to link cards on the
compute nodes. The connections to the I/O nodes are similar
to the connections to the compute node except the [/O nodes
are not connected to the torus network.

Again referring to FIG. 1, the computer system 100
includes a service node 140 that handles the loading of the
nodes with software and controls the operation of the whole
system. The service node 140 is typically a mini computer
system such as an IBM pSeries server running Linux with a
control console (not shown). The service node 140 is con-
nected to the racks 130 of compute nodes 110 with a control
system network 150. The control system network provides
control, test, and bring-up infrastructure for the Blue Gene/L.
system. The control system network 150 includes various
network interfaces that provide the necessary communica-
tion for the massively parallel computer system. The net-
work interfaces are described further below. In the Blue
Gene/LL system there may also be a number of front end
nodes that are similar to the service node 140. As used
herein, the term service node includes these other front end
nodes.

The service node 140 communicates through the control
system network 150 dedicated to system management. The
control system network 150 includes a private 100-Mb/s
Ethernet connected to an Ido chip 180 located on a node
board 120 that handles communication from the service
node 160 to a number of nodes. This network is sometime
referred to as the JTAG network since it communicates using
the JTAG protocol. All control, test, and bring-up of the
compute nodes 110 on the node board 120 is governed
through the JTAG port communicating with the service
node.

The service node includes a job optimizer 142 that
allocates parts of applications called jobs to execute on one
or more of the compute nodes. As illustrated in FIG. 1, the
job optimizer is software executing on the service node 140.
Alternatively, the job optimizer 142 may also reside on a
front end node or on another node of the system. The job
optimizer may be stored in data storage 138 which may
comprise a hard disk for temporary storage or a compact
disk for distribution or sale. In conjunction with the job
optimizer 142, the service node 140 also has a collector 144
that includes application specific metrics 145 and hardware
system metrics 146 used by the job optimizer to determine
how to allocate jobs. The application specific metrics 145
described herein include various metrics that are determined

US 9,459,923 B2

5
by application metric plug-ins. The application specific
metrics 145 and the hardware system metrics 146 are
described below.

FIG. 2 illustrates a block diagram of an exemplary com-
pute node as introduced above. FIG. 2 also represents a
block diagram for an I/O node, which has the same overall
structure as the compute node. A notable difference between
the compute node and the I/O nodes is that the Ethernet
adapter 226 is connected to the control system on the /O
node but is not used in the compute node. The compute node
110 of FIG. 2 includes a plurality of computer processors
210, each with an arithmetic logic unit (ALU) 211 and a
memory management unit (MMU) 212. The processors 210
are connected to random access memory (‘RAM’) 214
through a high-speed memory bus 215. Also connected to
the high-speed memory bus 214 is a bus adapter 217. The
bus adapter 217 connects to an extension bus 218 that
connects to other components of the compute node.

Stored in RAM 214 is a an application program 224, and
an operating system kernel 225. The application program is
loaded on the node by the control system to perform a user
designated task. The application program typically runs in
parallel with application programs running on adjacent
nodes. The application 224 may be divided into one or more
job(s) 226 which may be further divided into one or more
processing units 228. The application further includes one or
more application metric plug-ins 229 that determines appli-
cation specific metrics 145 as described further herein. The
operating system kernel 225 is a module of computer
program instructions and routines for an application pro-
gram’s access to other resources of the compute node. The
quantity and complexity of tasks to be performed by an
operating system on a compute node in a massively parallel
computer are typically smaller and less complex than those
of an operating system on a typical stand alone computer.
The operating system may therefore be quite lightweight by
comparison with operating systems of general purpose com-
puters, a pared down version as it were, or an operating
system developed specifically for operations on a particular
massively parallel computer. Operating systems that may
usefully be improved, simplified, for use in a compute node
include UNIX, Linux, Microsoft XP, AIX, IBM’s i5/0S, and
others as will occur to those of skill in the art.

The compute node 110 of FIG. 2 includes several com-
munications adapters 226, 228, 230, 232 for implementing
data communications with other nodes of a massively par-
allel computer. Such data communications may be carried
out serially through RS-232 connections, through external
buses such as USB, through data communications networks
such as IP networks, and in other ways as will occur to those
of skill in the art. Communications adapters implement the
hardware level of data communications through which one
computer sends data communications to another computer,
directly or through a network.

The data communications adapters in the example of FIG.
2 include a Gigabit Ethernet adapter 226 that couples
example 1/O node 110 for data communications to a Gigabit
Ethernet 234. In Blue Gene, this communication link is only
used on I/O nodes and is not connected on the compute
nodes. Gigabit Ethernet is a network transmission standard,
defined in the IEEE 802.3 standard, that provides a data rate
of'1 billion bits per second (one gigabit). Gigabit Ethernet is
a variant of Ethernet that operates over multimode fiber
optic cable, single mode fiber optic cable, or unshielded
twisted pair.

The data communications adapters in the example of FIG.
2 include a JTAG Slave circuit 228 that couples the compute

10

15

20

25

30

35

40

45

50

55

60

65

6

node 110 for data communications to a JTAG Master circuit
over a JTAG network 236. JTAG is the usual name used for
the IEEE 1149.1 standard entitled Standard Test Access Port
and Boundary-Scan Architecture for test access ports used
for testing printed circuit boards using boundary scan. JTAG
boundary scans through JTAG Slave 236 may efficiently
configure processor registers and memory in compute node
110.

The data communications adapters in the example of FIG.
2 include a Point To Point Network Adapter 230 that couples
the compute node 110 for data communications to a network
238. In Blue Gene, the Point To Point Network is typically
configured as a three-dimensional torus or mesh. Point To
Point Adapter 230 provides data communications in six
directions on three communications axes, X, y, and z,
through six bidirectional links 238: +x, -x, +y, -y, +z, and
-z. The torus network logically connects the compute nodes
in a lattice like structure that allows each compute node 110
to communicate with its closest 6 neighbors.

The data communications adapters in the example of FIG.
2 include a collective network or tree network adapter 232
that couples the compute node 110 for data communications
to a network 240 configured as a binary tree. This network
is also sometimes referred to as the collective network.
Collective network adapter 232 provides data communica-
tions through three bidirectional links: two links to children
nodes and one link to a parent node (not shown). The
collective network adapter 232 of each node has additional
hardware to support operations on the collective network.

Again referring to FIG. 2, the collective network 240
extends over the compute nodes of the entire Blue Gene
machine, allowing data to be sent from any node to all others
(broadcast), or a subset of nodes. Each node typically has
three links, with one or two links to a child node and a third
connected to a parent node. Arithmetic and logical hardware
is built into the collective network to support integer reduc-
tion operations including min, max, sum, bitwise logical
OR, bitwise logical AND, and bitwise logical XOR. The
collective network is also used for global broadcast of data,
rather than transmitting it around in rings on the torus
network. For one-to-all communications, this is a tremen-
dous improvement from a software point of view over the
nearest-neighbor 3D torus network.

FIG. 3 shows a block diagram that illustrates the inter-
action of the software elements shown to reside in the
service node 140 of FIG. 1 and the compute node 110 in FIG.
2. The application 224 includes one or more application
metric plug-ins 229. The plug-ins may be a procedure or
routine called by the application or the collector to deter-
mine application specific metrics 145. The collector 144 in
the service node 140 collects application specific metrics
145 from the application 224. The application specific
metrics 145 are any suitable metrics that can be determined
by application plug-ins 229 associated with the application
224. The collector passes these application specific metrics
145 to the job optimizer 142. The application specific
metrics are examined to determine if they are within the
desired range of values. This may be accomplished by
passing the values for the metrics to another plug-in or
function written by the application developer or a configu-
ration file could be used to define the desired range of values
for the metric. The execution of the application metric
plug-in may be done on a time interval set up in the
application. A comparison of the metrics and desired values
is then done by the job optimizer. The job optimizer may
then determine how to best allocate processing units on the
multi-nodal computer system.

US 9,459,923 B2

7

The collector 144 collects metrics that are used by the job
optimizer to dynamically allocate jobs or parts of a jobs
(processing units) on a multi-nodal, parallel computer sys-
tem. Application specific metric are measurable objectives
or expected results of the application. Examples of applica-
tion specific metrics 145 include the following: production
rates, data communication rates, data quality, data availabil-
ity, data throughput, result values or quality, etc. For an
example of data throughput, if a distributed application is
supposed to assess the quality of 10,000 manufactured
widgets per hour, a metric would be defined at the applica-
tion level that measures this rate. If this metric is not met, the
job optimizer would analyze how to allocate the jobs to get
better performance as described below. For an example of
result quality, if a distributed application is trying to identify
unique individuals in a video data stream through facial
identification, a metric could be defined to expect the
application to be able to identify at least 10 individuals per
second. If this metric is not met, then the job optimizer
would attempt to allocate the processing units of the job for
better performance. For an example of data availability, if a
distributed application is supposed to ingest data from 1000
sensors per second, and it’s not ingesting at that rate, the job
optimizer similarly attempts to allocate the processing units
for better performance.

The collector 144 may also collect hardware system
metrics (146 FIG. 1) in conjunction with the application
specific metrics for the job optimizer to dynamically allocate
jobs or parts of a jobs (processing units) on a multi-nodal,
parallel computer system. The operating system kernel (225
FIG. 2) or other system components may assist in gathering
the hardware system metrics. In contrast to the application
specific metrics, the hardware system metrics are metrics
related more to the hardware and are gathered by the system.
Examples of hardware system metrics include the following:

1) System Metrics:

Aggregate CPU utilization across the multi-nodal system

Aggregate Memory utilization across the multi-nodal

system

Aggregate network load across the multi-nodal system

Node-to-node network utilization

2) Node Metrics:

CPU utilization for a node

Memory utilization for a node

Heap size for a node

3) Application hardware metrics:

Aggregate CPU utilization by an application

Aggregate memory utilization by an application

Result throughput for the application

Result latency for the application

4) Job metrics

Aggregate CPU utilization for the job

Aggregate memory utilization for the job

Data throughput utilization for the job

Data latency for the job

5) Processing Unit (PU) metrics

CPU utilization of the PU

Memory utilization of the PU

Data throughput of the PU

Data latency for the PU

FIG. 4 is a block diagram representing a portion of the
computer system 100 shown in FIG. 1. Each node 110A-
110F has a job 226 containing one or more processing units
228. The job 226 on the nodes 110A-110F may collectively
make up a single application or the jobs 226 may be portions
of different applications. This diagram represents the inter-
action of data communication between processing units in

25

45

50

55

60

65

8

the system. The lines 410 between the processing units 228
represent data communication or data sharing between the
processing units. Processing units 228 within the same job
226 on the same node may also be communicating but no
line is shown.

FIG. 5 is a block diagram representing two nodes, NodeA
110A and NodeB 110B, of a computer system similar to
computer system 100 shown in FIG. 1. FIG. 5 in conjunction
with FIGS. 6 and 7 illustrate examples of dynamically
allocating jobs as described and claimed herein. Running on
NodeA 110A is Jobl 226A that is composed of four pro-
cessing units (PU1 228A, PU2 228B, PU3 228C and PU4
228D). Running on NodeB 110B is Job2 226B that is
composed of two processing units (PU5S 228E and PU6
228F). For this example, Job1 and Job 2 combined comprise
an application 224. PU1 228A and PU2 228B process data
from one or more inputs sources (not shown). PU3 takes
data from PU1 and PU2 and reduces and/or summarizes the
data. PU4 228D takes data from PU3 and performs some
complex statistical analysis using the data. PU4 then pub-
lishes its results to Job2 228B running on NodeB 110B.

An example of dynamically changing the distribution of
processing units will now be described with reference to
FIG. 5 and FIG. 6. In this example, the application specific
metric is a data communication rate. The application metric
plug-in 229 executes to determine an application specific
metric 145. In this example, we assume the application
specific metric is a data rate of records sent from Job1 226 A
to Job2 226B that requires sending 1000 data records per
second. The application metric plug-in determines that
recently Job1 226 A is not processing records fast enough to
send to Job2 226B to meet the required data records per
second. The Job Optimizer 142 (FIG. 1) then examines the
hardware system metrics 146 (FIG. 1) to determine what
resources are contributing to the problem identified by the
application specific metric. In this example, the job opti-
mizer may find a hardware system metric, such as a pro-
cessor utilization metric, that indicates Jobl is executing
slowly because NodeA 110q is overutilized. The job opti-
mizer then examines Job1 and Job2 for possible changes in
allocation to optimize system resources and interprocess
communication. The Job Optimizer 142 then determines to
split Job1 into two jobs to increase the output of Jobl. The
two jobs from Job1 are shown as Jobla 610 and Job1b 612
in FIG. 6. The communications between PU3 and PU4 is an
interprocess communication that is currently local, but can
also be handled over a communication link. This change in
communication is preferably handled by the operating sys-
tem in a way that is invisible to the processing unit as
discussed above. PU4 228D is moved into Jobld 612 and
placed on NodeC 110C as shown in FIG. 6. Jobla 610 will
now consist of PU1, PU2 and PU3 running on NodeA 110A.
Job1b will consist of PU4 running on NodeC 110C. The
result is that more CPU resources are available to PU4 and
it should be able to provide results faster to Job2 226B.

FIG. 7 is a block diagram to illustrate an example of
dynamically combining a job as described and claimed
herein. In this example, the application specific metric is a
production rate. The initial scenario for this example is as
shown and described above with reference to FIG. 5. In this
example we assume that the application analyzes images
taken of some widgets as they came off an assembly line.
The application uses PU1 228 A through PU4 228D running
in Job1 226 A on NodeA 110A, and PUS 228E and PU6 228F
running in Job2 226B on NodeB 110B as shown in FIG. 5.
The processing units in Jobl 226A preprocess the images
and the processing units in Job2 226B perform the analysis.

US 9,459,923 B2

9

The pre-processed images flow from Jobl to Job2 over a
network connection (because the jobs are running on dif-
ferent nodes). If some or all of the image files start to grow
in size (because of higher resolution image capture devices
or adjustments made to the captures devices), the network
connection between these two nodes might become over-
loaded. The application metric plug-in 229 collects the
metric data that allows the job optimizer to determine the
application was not analyzing widgets images at the desired
rate. This metric may be determined, for example, by
examining the results of Job2, i.e. how many widgets have
been analyzed per second. The Job Optimizer 142 (FIG. 1)
examines the application specific metrics 147 from the
collector (FIG. 1) and examines Jobl and Job2 for possible
changes in allocation to optimize system resources and
interprocess communication. Once the application problem
is identified by the application specific metric, the Job
Optimizer then uses the hardware system metrics above to
determine what hardware resources are affecting the appli-
cation specific metric and how to overcome the problem. For
example, the network between Job1 and Job2 may be found
to be overloaded by a node-to-node network utilization
metric. Alternatively, it may be found that sending the data
over the network requires to much overhead to keep up with
the desired data rate by looking at a processor utilization
metric. The Job Optimizer 142 then determines to combine
Job1 and Job2 into a single job to alleviate the overloaded
network to increase the production rate. The combined job
is shown in FIG. 7 as Job3 226C.

A hardware system metric (146 in FIG. 1) can be used in
combination with one or more application specific metrics
145 to identify a job or PU that is not executing within a
desired range. In our example above, the application specific
metric of widgets per second may be compared with
memory utilization of the node which is a hardware system
metric. The two could be combined by dividing memory
utilization by widgets per second, where memory utilization
is expressed as a percentage. Then job optimizer may
determine the application is using too much memory per
widget when the ratio exceeds some desired combination
metric such as 5%. For example a 90% memory utilization
and a widget rate of 55 per sec would result in an acceptable
value (a value of 1.64% which is less than 5%) while a 60%
memory utilization and a widget rate of 8 per sec would
indicate a problem (a value of 7.5% which is greater than
5%). The Job Optimizer would then determine how to
dynamically change the allocation of the processing units to
overcome the problem identified by the combination metric.
In addition, after the identifying the problem with the
combined metric, the Job Optimizer may optionally also
examine other hardware system metrics to identify resource
problems affecting the combined metric to determine how to
dynamically change the allocation of the processing units on
the compute nodes based on the collected metrics as
described herein.

The previous examples described splitting a job running
on one node into two jobs that run on two nodes and
combining PUs into a job that runs on a single node.
Similarly, a job running on one node can be split into two
jobs that run on one node where there may be a performance
benefit to do this in some cases. For example, on nodes with
multiple processors, breaking things up into multiple jobs
may allow for better exploitation of the multiple processors.
This would be done in a manner similar to that described
above.

FIG. 8 shows a method 800 for dynamically adjusting
allocation of processing units on a multi-nodal computer

10

15

20

25

30

35

40

45

50

55

60

65

10

system according to embodiments herein. The steps in
method 800 are preferably performed by the collector and
job optimizer executing on the service node and/or the
compute nodes of the system. First the job optimizer starts
execution of the application with one or more application
metric plug-ins on one or more compute nodes of the system
(step 810). The application may comprise one or more jobs,
where each job may comprise one or more processing units.
The collector then collects appropriate application specific
metrics from the processing units of the application (step
820). The job optimizer then analyzes the collected metrics
(step 830). Next, the job optimizer checks the collected
metric to determine if they are in the accepted range (step
840). If the metrics are in the accepted range (step 840=yes)
the return to step 810. If the metrics are not in the accepted
range (step 840=no) then identify the jobs and/or processing
units affecting the performance as indicated by the applica-
tion specific metric out of range (step 850). Then examine
the hardware system metrics to identify a what resource
problems are contributing to the application specific metric
identified above (step 855), and access the potential job and
processing unit reallocations that could be used to dynami-
cally change the allocation of the processing units on the
compute nodes based on the collected metrics and identified
resources to optimize system resources and interprocess
communications (step 860). Determine whether to combine
processing units or split processing units to alleviate prob-
lem associated with the collected application metric and the
identified resource (step 870). If it is determined to combine
the jobs (step 870=combine) then combine one or more
processing units into a single job (step 880) and return to
step 810. If it is determined to split the jobs (step 870=split)
then split a job into multiple processing units on separate
nodes to alleviate poor performance of the job (step 890) and
return to step 810. The method is then complete.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: a portable computer
diskette, a hard disk, a random access memory (RAM), a
read-only memory (ROM), an erasable programmable read-
only memory (EPROM or Flash memory), an optical fiber,
a portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device. A computer readable signal medium

US 9,459,923 B2

11

may include a propagated data signal with computer read-
able program code embodied therein, for example, in base-
band or as part of a carrier wave. Such a propagated signal
may take any of a variety of forms, including, but not limited
to, electro-magnetic, optical, or any suitable combination
thereof. A computer readable signal medium may be any
computer readable medium that is not a computer readable
storage medium and that can communicate, propagate, or
transport a program for use by or in connection with an
instruction execution system, apparatus, or device. Program
code embodied on a computer readable medium may be
transmitted using any appropriate medium, including but not
limited to wireless, wireline, optical fiber cable, RF, etc., or
any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider). Aspects of the present invention are described
below with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks. These computer program
instructions may also be stored in a computer readable
medium that can direct a computer, other programmable
data processing apparatus, or other devices to function in a
particular manner, such that the instructions stored in the
computer readable medium produce an article of manufac-
ture including instructions which implement the function/act
specified in the flowchart and/or block diagram block or
blocks. The computer program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other devices to cause a series of opera-
tional steps to be performed on the computer, other pro-
grammable apparatus or other devices to produce a
computer implemented process such that the instructions
which execute on the computer or other programmable
apparatus provide processes for implementing the functions/
acts specified in the flowchart and/or block diagram block or
blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the

20

25

30

40

45

50

12

present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

As described above, embodiments provide a method and
apparatus dynamically changes the allocation of processing
units on a multi-nodal computer system. One skilled in the
art will appreciate that many variations are possible within
the scope of the claims. Thus, while the disclosure has been
particularly shown and described above, it will be under-
stood by those skilled in the art that these and other changes
in form and details may be made therein without departing
from the spirit and scope of the claims.

The invention claimed is:

1. An apparatus comprising:

a plurality of nodes of a multi-nodal computer system,
wherein the plurality of nodes are connected by a
plurality of networks, where each of the plurality of
nodes has at least one central processing unit (CPU)
coupled to a memory;

an application having a plurality of jobs, each with at least
one processing unit executing on the plurality of nodes;

an application metric plug-in associated with the appli-
cation executing on the plurality of nodes that deter-
mines an application specific metric that is a measur-
able objective of the application in order to determine
how to best allocate the jobs on the system;

a collector that collects the application specific metric;

a job optimizer that dynamically changes the allocation of
processing units on the plurality of nodes based on the
collected application specific metric to optimize system
resources and interprocess communications; and

wherein the application specific metric is a measurable
objective of the application comprising data throughput
wherein the application specific metric further com-
prises a measurable objective of the application chosen
from the following:

production rates, data communication rates, data quality,
data availability, a result value and a result quality.

2. The apparatus of claim 1 wherein the job optimizer
dynamically changes the allocation of the processing units
by combining at least two processing units from jobs on
different nodes into a job on a single node of the plurality of
nodes.

3. The apparatus of claim 1 wherein the job optimizer
dynamically changes the allocation of the processing units
by splitting a job into multiple jobs on different nodes of the
plurality of nodes.

4. The apparatus of claim 1 wherein the job optimizer
dynamically changes the allocation of the processing units
by splitting a job into multiple jobs on a same node to utilize
multiple processors of the same node.

5. The apparatus of claim 1 wherein the application metric
plug-in is initiated by the collector.

US 9,459,923 B2

13

6. The apparatus of claim 1 wherein the application metric
plug-in is initiated by the application.
7. The apparatus of claim 1 further comprising a hardware
system metric that is used in conjunction with the applica-
tion specific metric to determine how to best allocate the
jobs on the system.
8. An apparatus comprising:
a plurality of nodes of a multi-nodal computer system,
wherein the plurality of nodes are connected by a
plurality of networks, where each of the plurality of
nodes has at least one central processing unit (CPU)
coupled to a memory;
an application having a plurality of jobs, each with at least
one processing unit executing on the plurality of nodes;
an application metric plug-in associated with the appli-
cation executing on the plurality of nodes that deter-
mines an application specific metric that is a measur-
able objective of the application in order to determine
how to best allocate the jobs on the system, wherein the
measurable objective comprises: production rates, data
communication rates, data quality, data availability,
data throughput, a result value and a result quality;
a collector that collects the application specific metric
from the application metric plug-in; and
a job optimizer that analyzes the application specific
metric, and when the application specific metric is
outside a desired range, the job optimizer performs the
steps of:
identifying jobs affecting the application specific met-
ric;

examining hardware system metrics to identify
resources affecting the application specific metric;

assessing potential job and processing unit relocations
in order to determine how to best allocate the jobs on
the system; and

dynamically changing the allocation of the processing
units on the compute nodes based on the collected
metrics and identified resources to optimize system
resources and interprocess communications by com-

5

20

25

35

14

bining at least two processing units executing on
different nodes into a job on a single node.

9. An article of manufacture comprising software stored
on a non-transitory computer-readable storage medium com-
prising:

an application having a plurality of jobs, each with at least
one processing unit for execution on a node of a
multimodal computer system;

an application metric plug-in associated with the appli-
cation executing on the plurality of nodes that deter-
mines an application specific metric that is a measur-
able objective of the application in order to determine
how to best allocate the jobs on the system;

a collector that collects the application specific metrics
and examines a hardware system metric to identify
resource problems affecting the application specific
metric;

a job optimizer that dynamically changes the allocation of
processing units on the plurality of nodes based on the
collected application specific metric and the hardware
system metric to optimize system resources and inter-
process communications; and

wherein the application specific metric is a measurable
objective of the application comprising data throughput
wherein the application specific metric further com-
prises a measurable objective of the application chosen
from the following: production rates, data communi-
cation rates, data quality, data availability, a result value
and a result quality.

10. The article of manufacture of claim 9 wherein the job
optimizer dynamically changes the allocation of the pro-
cessing units by combining at least two processing units
from jobs on different nodes into a job on a single node of
the plurality of nodes.

11. The article of manufacture of claim 9 wherein the job
optimizer dynamically changes the allocation of the pro-
cessing units by splitting a job into multiple jobs on different
nodes of the plurality of nodes.

#* #* #* #* #*

